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Abstract—Shortening software release cycles increasingly be-
comes a critical competitive advantage, not exclusively for soft-
ware vendors in the field of Web applications, mobile apps,
and the Internet of Things. Today’s users, customers, and other
stakeholders expect quick responses to occurring issues and
feature requests. DevOps and Cloud computing are two key
paradigms to enable rapid, continuous deployment and delivery
of applications utilizing automated software delivery pipelines.
However, it is a highly complex and sophisticated challenge to
implement such pipelines by installing, configuring, and inte-
grating corresponding general-purpose deployment automation
tooling. Therefore, we present a method in conjunction with a
framework and implementation to dynamically generate tailored
deployment engines for specific application stacks to deploy
corresponding applications. Generated deployment engines are
packaged in a portable manner to run them on various platforms
and infrastructures. The core of our work is based on generating
APIs for arbitrary deployment executables such as scripts and
plans that perform different tasks in the automated deployment
process. As a result, deployment tasks can be triggered through
generated API endpoints, abstracting from lower-level, technical
details of different deployment automation tooling.

Keywords—Deployment, Deployment Engine, Provisioning, Ap-
plication Topology, APIfication, DevOps, Cloud Computing

I. INTRODUCTION

In many of today’s organizations, development and op-
erations are strictly split, e.g., across different groups or
departments in a company. They usually follow different goals,
have contrary mindsets, and own incompatible processes. This
conventional split was mainly implemented to foster clear
separation of concerns and responsibility. However, it is a
major obstacle for fast and frequent releases of software as
required in many environments today. Typically, developers
aim to push changes into production quickly, whereas the
operations personnel’s goal is to keep production environments
stable [1]. For this reason, collaboration and communication
between developers and operations personnel is mainly based on
slow, manual, and error-prone processes. As a result, it takes a
significant amount of time to put changes, new features, and bug
fixes into production. However, especially users and customers
of Web applications and mobile apps expect fast responses to
their changing and growing requirements. Thus, it becomes a
competitive advantage to enable fast and frequent releases by
implementing highly automated processes. However, this cannot
be achieved without closing the gap between development and
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Figure 1. DevOps lifecycle (adapted from [2], [3])

operations. DevOps [2] is an emerging paradigm to bridge the
gap between these two groups to enable efficient collaboration.

Organizational and cultural changes are typically required
to eliminate this split [1]. In addition, the deployment process
needs to be highly automated to enable continuous delivery
of software [3]. The constantly growing DevOps community
supports this by providing a huge variety of approaches
such as tools and artifacts to implement holistic deployment
automation. Prominent examples are Chef [4], Puppet [5], and
Ansible [6]. Reusable artifacts such as scripts, modules, and
templates are publicly available to be used for deployment
automation. Furthermore, Cloud computing [7] is heavily
used to provision the underlying resources such as virtual
servers, storage, network, and databases on demand in a
self-service and pay-per-use manner. Cloud providers such
as Amazon Web Services (AWS)1 expose APIs to be used
in automated deployment processes. However, the efficient
and automated deployment of complex composite applications
typically requires a combination of various approaches, APIs,
and artifacts because each of them solves different kinds of
challenges [8]. Moreover, all phases of the DevOps lifecycle2 as
outlined in Figure 1 must be targeted to enable comprehensive
automation. Application instances are not only deployed to
production environments (ops-centric phase). When developing
and testing the application, instances of it have to be deployed,
too (dev-centric phase). This is required, e.g., to run test cases or

1Amazon Web Services (AWS): http://aws.amazon.com
2New Relic’s DevOps lifecycle: http://newrelic.com/devops/lifecycle



to quickly double-check the correctness of recent code changes
on a developer’s machine. Consequently, the application is
constantly deployed and re-deployed to different environments,
so efficient and comprehensive deployment automation is of
utmost importance. Furthermore, the deployment logic has to be
portable and minimal to seamlessly run in various environments,
from a simple developer machine to a distributed, multi-cloud
infrastructure in production. As a major goal, our work aims to
dynamically generate tailored deployment engines for individual
application stacks by generating APIs for deployment scripts
and other executables (APIfication). These engines are portable
and minimal (i.e., comprising exactly the deployment logic
required for the given application stack) to efficiently run in
different environments. The key contributions of this paper can
therefore be summarized by:

• A fully integrated end-to-end method to dynamically
generate tailored deployment engines for Cloud appli-
cations, covering design time, build time, and runtime.

• An architectural framework and an implementation
based an various open-source building blocks to sup-
port all phases and steps of the previously introduced
method.

• An evaluation to analyze the overhead of generating
deployment engines.

• A case study on applying the presented approach to
the emerging paradigm of microservice architecture.

The remainder of this paper is structured as follows:
Section II discusses the problem statement and outlines a
motivating scenario. Important fundamentals are presented in
Section III to understand the dynamic tailoring method for
deployment engines discussed in Section IV. The framework,
its architecture, and the implementation to support the individual
phases and steps of the method are presented in Section V and
Section VI. Based on them, Section VII and Section VIII discuss
the evaluation and a case study. Finally, we outline related work
in Section IX and conclude the paper with Section X.

II. MOTIVATION & PROBLEM STATEMENT

In this section we introduce a Web shop application as
motivating scenario and running example for our work. The
application structure is outlined in Figure 2 as topology model
consisting of the actual Web shop application stack on the
left and the associated database stack on the right. In terms
of infrastructure we assume a hybrid Cloud deployment: the
application itself is hosted on Amazon (EC2 virtual server3),
whereas the database resides on an OpenStack environment
to avoid outsourcing sensitive data to public Cloud providers.
The middleware consists of an Apache HTTP server combined
with a PHP module to serve the user interface and run the
business logic of the Web shop application. For the database, a
MySQL master/slave setup is used to improve the application’s
scalability and to enable high availability of the database: data
that are written to the master instance are replicated to the slave
instances, so reading requests can be load-balanced between
slave instances. In case the master instance breaks, a slave
instance can be selected to be the new master instance.

3Amazon EC2: http://aws.amazon.com/ec2
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Figure 2. Web shop application topology (adapted from [9])

In terms of deployment automation of the different parts
involved in the application topology, the Apache HTTP server
and the associated PHP modules are deployed using the Chef
cookbooks4 apache2 and php. In addition, we could use
the mysql cookbook to deploy a MySQL database server.
However, the mysql cookbook does not support a master/slave
setup as specified in the Web shop application topology.
For this reason we use the mysql charm provided by the
Juju community5 to have this setup covered. On top of the
middleware layer we utilize individually developed Shell scripts
to deploy the actual application components. Deployment on
the infrastructure layer including the provisioning of virtual
machines and networking properties happens through fog6, a
Ruby-based library to interact with APIs of Cloud providers
and Cloud management frameworks such as Amazon and
OpenStack.

As outlined before, there are multiple kinds of artifacts and
approaches involved in the implementation of the automated de-
ployment of the Web shop application topology. Consequently,
a lot of technical details and differences have to be considered
when implementing an automated deployment process for
that topology. A plain Chef-based or Juju-based deployment
engine does not suffice because both Chef and Juju need to
be supported by the engine for the middleware deployment in
addition to the application-specific Shell scripts. Furthermore,
the application topology is deployed in a multi-cloud fashion
with Amazon as a public Cloud provider and OpenStack as a
private Cloud management platform involved. General-purpose
deployment engines as, for instance, discussed in [10] that
support a multitude of deployment approaches and technologies
tackle these issues, but tend to be heavyweight and complex to
maintain. This is because of their generic nature to support a
huge and potentially ever-growing variety of application topolo-
gies, covering different deployment approaches. Moreover, such
an engine may become a single point of failure if it is used as a
centralized piece of middleware for the deployment of various
application topologies in a particular environment. Generic
deployment automation frameworks such as OpenTOSCA [11],
Terraform7, and Apache Brooklyn8 enable the orchestration of
different deployment executables and approaches by introducing

4Chef Supermarket: https://supermarket.chef.io/cookbooks
5Juju charms: https://jujucharms.com
6fog: http://fog.io
7Terraform: https://terraform.io
8Apache Brooklyn: https://brooklyn.incubator.apache.org



unified meta-models for the purpose of abstraction. However,
this abstraction does not happen automatically. Specialized glue
code needs to be implemented to make different approaches
available through the corresponding meta-model.

To tackle the previously described issues, we present an
approach to dynamically generate tailored deployment engines
for applications using automated APIfication, i.e., generating
APIs for different kinds of deployment executables. Such
individually generated engines cover exactly the deployment
actions required for a certain application topology or a group
of related application topologies. An example for such a group
could be the specialization and refinement of an application
topology as shown in Figure 2 for different target environments:
developers typically prefer to run an application on their
developer machine by keeping the overhead as low as possible.
Consequently, a developer-oriented topology may run all
required components in one VM or one Docker container [12]
to have a lightweight environment, whereas a cluster of VMs
would be preferable for a production environment to ensure
high availability. In the following Section III, we describe the
basic concepts and fundamentals of our approach, explaining
how the dynamic tailoring targets the previously identified
challenges. Furthermore, we define key terms that are relevant
for the dynamic tailoring of deployment engines.

III. DYNTAIL CONCEPTS & FUNDAMENTALS

As motivated previously in Section II, individually generated
deployment engines are required to efficiently enable the
deployment of Cloud applications, especially considering multi-
cloud setups and the combination of differently specialized
deployment automation approaches. In the remainder of this
paper we refer to a DYNTAIL engine (i.e., dynamically
tailored deployment engine, in short engine) as a portable
and executable package of deployment logic that exposes at
least one API endpoint to deploy instances of at least one
application topology. In the following we focus on deployment
logic. However, a DYNTAIL engine may also cover management
logic, e.g., to scale certain components that have been deployed.
An application topology as outlined in Section II for the Web
shop application can be technically specified using various
languages such as the Topology and Orchestration Specification
for Cloud Applications (TOSCA) [13], [14]. The portable
packaging of DYNTAIL engines enables their usage in very
different environments (development on a laptop, test on a local
server, production in the Cloud, etc.), targeting the DevOps
lifecycle as discussed in Section I. In this context we want to
emphasize the fact that the DYNTAIL engine and any of the
created application instances may run in different environments.
As an example, the DYNTAIL engine may run directly on
a developer machine, whereas the application instance that
it creates may run remotely in the Cloud. However, both
environments (DYNTAIL engine and application instance) can
also be the same such as a developer laptop.

The deployment logic packaged as a DYNTAIL engine
is technically implemented by at least one deployment ex-
ecutable (in short executable), which can be any kind of
runnable artifact such as a script, a configuration definition, or
a compiled program. A deployment executable may implement
‘atomic’ deployment actions, e.g., a deployment script to install
and configure certain software packages on a Linux machine,
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Figure 3. Example for a DYNTAIL engine, deployment plan and executables

or a piece of code to invoke a Cloud provider API to provision
virtual servers. Alternatively or additionally, it composes
other deployment executables, e.g., a deployment workflow
implemented in BPMN [15] or a CloudFormation template9 to
invoke and orchestrate several deployment scripts, potentially
in parallel. In this context we refer to a deployment plan (in
short plan) as a deployment executable that orchestrates all
required deployment executables to create an instance of a
certain application topology. Consequently, each DYNTAIL
engine exposes an API endpoint to trigger the invocation
of a deployment plan to create instances of an application
topology. As shown in the example outlined in Figure 3, this
API endpoint is either utilized by a user or an external system,
e.g., a higher-level scheduler that provisions additional instances
of an application depending on the current load. In addition to
exposing API endpoints, user interface (UI) endpoints could
be provided to ease the interaction between users and the
DYNTAIL engine. Alternatively to developing a deployment
plan manually, it may be derived from a given application
topology model dynamically at runtime [16].

By following the approach of dynamically generating
tailored engines for certain application topologies or groups of
related topologies, several benefits appear that help to tackle
the issues outlined in Section II:

• A generated DYNTAIL engine can be minimal by only
including deployment executables implementing the
deployment actions required by a certain application
topology. Consequently, it provides an optimized
performance due to minimal resource consumption
and minimal setup efforts.

• A generated DYNTAIL engine can be optimized for the
deployment of a given application topology in terms of
which kind of API is exposed (REST, SOAP/WSDL,
JSON-RPC, etc.), how it is packaged (Docker container,
VM image, etc.), and further aspects.

• Generated DYNTAIL engines are independent of each
other because they package all required deployment
executables for deploying a particular application in a
self-contained manner. Consequently, they do not rely
on centralized, self-hosted middleware components
such as a service bus [10]. As a result, these engines

9Amazon CloudFormation: http://aws.amazon.com/cloudformation
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are more robust by avoiding a single point of failure
as it would be implied by a centralized middleware
component.

• Glue code that is required for exposing the functionality
of deployment executables through APIs does not have
to be developed and maintained manually, but it is
generated automatically.

• Consequently, contents of existing, diverse open-source
ecosystems providing reusable artifacts such as Chef
cookbooks, Docker containers, and Juju charms can
be utilized and combined without developing custom
glue code to make their functionality available through
APIs fitting the context of their usage.

• Multi-cloud (multiple Cloud providers) [17] and hybrid
Cloud deployments (e.g., private and public Cloud)
are supported by providing corresponding deployment
executables (e.g., to provision and connecting virtual
servers) to be used when generating tailored engines.

The following Section IV presents a method to dynamically
generate DYNTAIL engines, targeting the benefits of this
approach as described previously.

IV. DYNTAIL METHOD

In this section we introduce a method to dynamically
generate tailored engines as outlined in Figure 4, namely
the DYNTAIL method. It follows an abstract and generic
approach that can be implemented in various ways. On a
conceptual level there are three major phases, namely design
time, build time and runtime. The entry point is the design
time phase with its initial step to create and maintain an
application topology or a group of related topologies. After
modeling a topology, deployment executables are required to
deploy all individual infrastructure, middleware, and application
components that are involved. In step 2, these executables can
be either developed individually or already available artifacts
and frameworks can be used as they are publicly shared as
open-source software (Chef cookbooks, Juju charms, fog10,
jclouds11, etc.). After finding and/or developing the required

10fog: http://fog.io
11jclouds: http://jclouds.apache.org

deployment executables, in step 3 these need to be attached
to the application topologies that were originally created. The
three steps can be arbitrarily repeated to eventually end up with
properly designed application topologies including the required
application deployment executables.

The next major phase is build time, which starts with step 4
of generating or manually creating a deployment plan. As
defined in Section III, a deployment plan is a deployment
executable that orchestrates all required deployment executables
to create an instance of a certain application topology. In
previous work we presented an approach to automatically derive
and generate a deployment plan based on a given application
topology [16]. Such approaches can be utilized to generate
deployment plans, e.g., based on service composition languages
such as BPEL [18]. Optionally, a generated plan can be refined
manually if necessary, e.g., for customization purposes as
it is typically required for complex application topologies.
With creating the deployment plan all required deployment
executables are in place, so a DYNTAIL engine can be generated
and optionally be refined for customization purposes in step 5.
This step typically concludes the build time phase. However,
for some cases, a preliminary version of the DYNTAIL engine
needs to be generated (without a deployment plan) to have
the APIs for the underlying deployment executables in place.
This is to know how the API endpoints are structured in detail
to enable the generation or development of deployment plans
utilizing these API endpoints.

Finally, the runtime phase is entered through step 6 by
provisioning an instance of the generated DYNTAIL engine.
As defined in Section III, the DYNTAIL engine exposes at
least one API endpoint to trigger and manage the deployment
of application instances based on the originally modeled
application topology. This happens in step 7 of the runtime
phase. Typically, an invocation of this API endpoint runs the
deployment plan. In case no further application instances need
to be deployed and managed, the DYNTAIL engine can be
terminated in step 8. All three phases (design time, build
time, and runtime) are linked among each other, i.e., feedback
loops are supported to go from the runtime phase back to the
build time and design time phase in order to refine application
topologies, deployment executables, etc.

As stated before, the DYNTAIL method is abstract and
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generic enough to be implemented in various ways in order to
provide the benefits outlined in Section III. Therefore, in the
following section we provide a framework to implement the
phases with their individual steps.

V. DYNTAIL FRAMEWORK

The DYNTAIL framework outlined in Figure 5 provides
a way to implement and support all phases and steps of the
DYNTAIL method as discussed previously in Section IV. For
the design time phase a modeling environment for application
topologies such as the TOSCA-based Winery tooling [19]
is required. Other options include Flexiant’s Bento Boxes12

and GENTL [20]. Such a modeling environment is used to
create and maintain application topologies as well as to attach
corresponding deployment executables to them. Optionally, a
development environment for deployment executables such
as deployment scripts is required in case such deployment
executables (e.g., custom Shell scripts) are developed indi-
vidually. In order to dynamically and automatically derive a
deployment plan from a given application topology at build
time, a deployment plan generator as, for instance, presented in
previous work [16] is required. The plan generator must be able
to process the application topology created before. To decouple
the modeling environment from the plan generator, it is highly
recommended to utilize standards-based modeling approaches
such as TOSCA [13], [14]. In case the deployment plan needs
to be refined for customization purposes or is not generated
at all but created manually from scratch, a corresponding
development environment is required. The Eclipse BPEL
Designer13 is an example for such a development environment
for BPEL workflows [18].

To make the deployment executables, including deployment
plans accessible through APIs as outlined in Section III, an API
generator is required. The main purpose of the API generator is

12Flexiant Bento Boxes: http://goo.gl/8JDk52
13Eclipse BPEL Designer: http://eclipse.org/bpel

to wrap a deployment executable without modifying it and make
its functionality available through an API, hiding and abstracting
from the technical details of how to invoke the executable, how
to pass input parameters, and how to collect output data. Such
a generated API implementation does not only provide the
API endpoint but also includes additional logic, e.g., to run
the wrapped executable remotely using SSH. Consequently,
the generated API implementation significantly enhances the
scope of how the underlying deployment executable can be
used. In order to produce a packaged, self-contained DYNTAIL
engine including the generated APIs, another building block is
required, namely the DYNTAIL engine packager. The output
is a DYNTAIL engine as a portable, executable package
to be used later at runtime to deploy application instances.
Both building blocks, the API generator and the DYNTAIL
engine packager can, for instance, be implemented based on
an APIfication framework such as ANY2API [21]. Finally, a
runtime environment for packaged DYNTAIL engines is required
to provision the DYNTAIL engine and then utilize its APIs to
deploy and manage application instances. The kind of runtime
environment depends on the packaging format of the DYNTAIL
engine. Portable virtualization approaches such as Docker [12],
[22] or Vagrant [23] can be used for portable packaging and
execution of DYNTAIL engines in very different environments
on various platforms. In the following Section VI, we present
the architecture we used to implement the DYNTAIL framework
to support the DYNTAIL method discussed in Section IV.

VI. ARCHITECTURE & IMPLEMENTATION

In order to validate and evaluate the DYNTAIL framework
and the underlying DYNTAIL method we implemented a
prototype based on the architectural building blocks outlined in
Figure 5. It is based on a toolchain, which covers design time,
build time, and runtime. Especially portability and extensibility
were considered when implementing and establishing the
toolchain. The modeling of application topologies during design
time is covered by the Winery tooling [19]. It provides a
comprehensive and extensible modeling environment based on



the TOSCA standard [13]. By utilizing TOSCA as an emerging
standard in the field of Cloud application modeling, the
portability gets significantly improved. The OpenTOSCA plan
generator [16] is utilized at build time to dynamically produce
a deployment plan skeleton for a given application topology.
Such a skeleton is customized to meet the specific deployment
needs of the associated application topology. Because the
deployment plans are based on service composition languages
such as BPMN [15] or BPEL [18], corresponding APIs need
to be generated at build time to expose the functionality of
deployment executables that are attached to an application
topology. These APIs are generated using the APIfication
framework ANY2API [21]. As an example, SOAP/WSDL-based
Web service APIs [24] may be generated for deployment
exectuables to enable a deployment plan implemented in BPEL
to properly invoke and handle the underlying exectuables.
Alternatively, RESTful Web APIs [25] may be generated when
implementing a deployment plan using a scripting language
such as Python or Ruby in conjunction with libraries such as
rest-client14. The deployment plan, which is itself a deployment
executable, is exposed through an API, too. Finally, Docker [12]
is used as a portable container virtualization approach to
(i) package DYNTAIL engines at build time using Dockerfiles15

and (ii) to execute them potentially anywhere at runtime.
The packaging is performed by ANY2API. To provide even
more isolation at runtime (e.g., in case a Docker container
running a DYNTAIL engine should not be placed directly
on a machine), Vagrant [23] may be utilized to run Docker
containers inside a dedicated virtual machine. All parts of the
toolchain including Winery16, OpenTOSCA’s plan generator17,
ANY2API18, Docker19, and Vagrant20 are available as open-
source software.

VII. EVALUATION & DISCUSSION

The APIfication of deployment executables is the key
enabler for dynamically generating DYNTAIL engines in the
context of the DYNTAIL framework and method as discussed
in Section IV and Section V: the functionality of arbitrary
deployment executables is exposed through APIs. On the one
hand this approach significantly eases the usage and integration
of deployment functionality, on the other hand an additional
layer is added, namely the API implementation invoking the
executable. This may result in performance degradation at
runtime. Moreover, additional overhead occurs at build time
because an individual API is generated for each deployment
executable. Our current architecture and implementation utilizes
ANY2API [21] as APIfication framework. We evaluate the
impact of the APIfication-related overhead at build time and
runtime. Therefore, we use the ANY2API framework to generate
individual API implementations for a set of deployment
executables required to deploy the Web shop application
topology outlined in Section II. These are in particular, three
publicly shared Chef cookbooks (apache2, php, and mysql)
to deploy an Apache HTTP server, a PHP runtime environment,

14rest-client library: http://github.com/rest-client/rest-client
15Dockerfile: https://docs.docker.com/reference/builder
16Winery Dockerfile: http://github.com/jojow/winery-dockerfile
17OpenTOSCA on GitHub: https://github.com/OpenTOSCA
18ANY2API: http://any2api.org
19Docker: http://www.docker.com
20Vagrant: http://www.vagrantup.com

and a MySQL database server. In addition, two Ruby scripts are
implemented using fog (aws-ec2 and aws-rds) to provision
a virtual server on the Amazon EC2 Cloud infrastructure and
to provision a managed MySQL database server instance using
Amazon Relational Database Service (RDS)21. In particular,
the aws-ec2 script provisions a virtual machine running
Ubuntu 14.04 (of m3.medium size) in the us-east-1 region;
the aws-rds script provisions a MySQL 5.6 RDS instance
(of db.m3.medium size) in the us-east-1 region. We generate
a RESTful Web API for each of them and measure (i) how
long it takes to generate the API implementation at build time.
Furthermore, we perform runtime measurements, i.e., (ii) how
long it takes for the deployment executable to run and (iii) how
much resources it takes in terms of memory for the deployment
executable to run. To analyze the performance overhead of the
APIfication approach, we further run the plain deployment
executables directly to measure and compare the execution
time and memory consumption.

The evaluation was run on a clean virtual machine (4 virtual
CPUs clocked at 2.8 GHz, 64-bit, 4 GB of memory) on top of
the VirtualBox hypervisor, running a minimalist Linux system
(boot2docker25). The processing and invocation of a particular
deployment executable was done in a clean Docker-based
Debian Linux container, with exactly one container running
on the virtual machine at a time. We did all measurements at
container level to completely focus on the workload that is
linked to the executable and the API implementation. To pro-
duce representative results, we run each deployment executable
20 times (10 times with, 10 times without API implementation).
5 of each set of 10 runs were initial executions (run in a clean
environment without any execution run before), the other 5
times were subsequent executions (run in an environment, in
which an initial execution was run before). Table I shows the
results of our evaluation. Results of subsequent executions
are depicted in brackets. The measured average duration to
generate an API implementation (in the range from 8 to 33
seconds) is the overhead at build time, including the retrieval
of all dependencies of the given executable. Generally, there is
a minor overhead in terms of execution duration and memory
consumption at runtime. In most of today’s environments this
overhead should be acceptable, considering the significant
simplification of using the generated APIs compared to the
plain executables. In addition, when using the plain executables
directly, much of the complexity hidden by the generated API
implementation has to be covered at the orchestration level.
So, the overall consumption of resources may be the same or
even worse, depending on the selected means for orchestration.
Furthermore, instances of API implementations can be reused
to run an executable multiple times and potentially in different
remote environments. Through this reuse, the overhead can be
quickly compensated in large-scale environments.

VIII. CASE STUDY: MICROSERVICE ARCHITECTURES

Microservices [26] are an emerging architectural style to
develop complex applications in a strictly modular manner,
avoiding monolithic architectures that are hard to maintain.
Each component is developed, packaged, and deployed as
an independent entity, providing a service-based interface

21Amazon RDS: http://aws.amazon.com/rds
25boot2docker: http://boot2docker.io



Table I. MEASUREMENTS: OVERHEAD OF API IMPLEMENTATIONS (SUBSEQUENT EXECUTIONS IN BRACKETS)

mysql cookbook php cookbook apache2 cookbook aws-ec2 script aws-rds script

Avg. duration to generate API implementation 12s (0s) 33s (0s) 13s (0s) 9s (0s) 8s (0s)

Avg. execution duration with API implementation 65s (9s) 75s (15s) 40s (10s) 403s (183s) 1136s (827s)

Avg. execution duration without API implementation 64s (7s) 72s (11s) 35s (10s) 398s (174s) 1139s (819s)

Max. memory usage with API implementation 403M (407M) 295M (297M) 242M (243M) 507M (509M) 358M (358M)

Max. memory usage without API implementation 343M (344M) 230M (231M) 179M (179M) 459M (459M) 282M (281M)

Used ANY2API invoker module for execution Chef invoker22 Chef invoker Chef invoker Ruby invoker23 Ruby invoker

Used ANY2API generator module to generate API impl. REST generator24 REST generator REST generator REST generator REST generator

to interact with other microservices making up a certain
application. Microservices interact among each other through
language-agnostic APIs (e.g., HTTP-based REST APIs), so each
application component can potentially be implemented based on
a different technology stack. Each individual microservice may
be deployed on different servers or even different infrastructures
or Cloud providers. Consequently, not only the internal appli-
cation structure is modularized (which is state of the art, e.g.,
using Java packages or Ruby modules), but also the deployment
of application components can be highly distributed. Therefore,
this architectural style enables the independent deployment and
re-deployment of individual application components (e.g., only
the ones that have been changed) without re-deploying the
application as a whole. As a result, deployment processes can
be much faster and more flexible, enabling rapid and continuous
delivery of an application by quickly responding to required
changes, occurring problems, and additional functionality.

DYNTAIL engines as proposed in this paper are a great fit
for microservice architectures. Because each microservice (i.e.,
application component) is managed and deployed independently,
an individually tailored engine can be dynamically generated
for each of them. This approach significantly improves the
decoupling of microservices by not only treating them as
independently deployable entities, but also providing and
individually assigning tailored deployment logic to each of
them. Consequently, microservices do not share general-purpose
deployment facilities and thus are not depending on centralized
middleware for deployment purposes. A DYNTAIL engine is
minimal and thus comprises exactly the deployment logic
required by a certain microservice. Furthermore, proper APIs
can be provided by a DYNTAIL engine for each microservice
individually. Choosing the most appropriate kind of API
can therefore be completely determined by the context and
environment of a particular microservice, including developers’
preferences and established practices.

IX. RELATED WORK

The DYNTAIL method and framework (Section IV and
Section V) presented previously focus on generating DYNTAIL
engines for individual application topologies. The resulting
engines are self-contained and portable and thus do not
rely on centralized middleware components at runtime such
as general-purpose deployment engines. Related work [10],
[11], [27] proposes approaches to deploy and manage ap-
plication topologies with deployment executables attached
directly utilizing general-purpose deployment engines. Such
engines are typically extensible to deal with a broad variety of

deployment executables. Consequently, the additional step of
generating an individually tailored engine can be skipped by
using such engines, which may reduce the overhead at build
time. However, several drawbacks appear compared to the
dynamic tailoring approach presented in this paper. A general-
purpose engine is very often used as centralized middleware
component for multiple deployment scenarios. This makes
it hard to maintain and potentially a single point of failure.
Furthermore, the APIs provided by general-purpose engines are
not ideal for all deployment scenarios because there is no ‘one-
size-fits-all’ approach. Typically, the ideal solution depends
on multiple factors such as existing expertise, established
practices, and the utilized orchestration technique. As a result,
custom glue code is developed (e.g., in the form of scripts
or plugins, potentially hard to reuse) to wrap existing APIs
correspondingly. Additionally, general-purpose engines are not
minimal because they are not specialized for a given application
topology. Consequently, the overhead at runtime is typically
higher compared to tailored engines. This makes a significant
difference in case the engine is provisioned and used several
times in different environments.

The concept of initially provisioning a deployment engine
and then using it to deploy application instances is similar to the
“bootware” approach [28] used in the context of modeling and
running scientific workflows. It follows a two-step bootstrapping
process, which initially provisions a deployment engine. In the
second step, the deployment engine is used to deploy the target
environment including all required middleware and application
components. However, in contrast to our DYNTAIL approach,
these deployment engines are not dynamically generated. They
are general-purpose deployment engines, i.e., non-specialized
complex systems, which are not specifically tailored for certain
application topologies. Further related work [9] aims to ease
the reuse of contents provided by existing, diverse open-source
ecosystems. This is achieved by transforming different kinds of
deployment executables toward standards-based artifacts utiliz-
ing TOSCA [13]. While this is an efficient approach to cover the
design time and build time phases of deployment automation, a
general-purpose deployment engine is still required at runtime
to create instances of an application topology. Several Cloud
providers offer modeling and orchestration tooling such as
Amazon OpsWorks [29], covering design time, build time, and
runtime. In addition, platform-as-a-service (PaaS) offerings such
as Heroku [30] and IBM Bluemix26 are provided to directly
deploy and manage application instances without explicitly
modeling application topologies. These approaches can only

26IBM Bluemix: http://bluemix.net



be used efficiently in case the whole application is hosted at a
single provider. When implementing a multi-cloud or hybrid
Cloud deployment scenario these approaches are generally not
feasible. In addition, vendor lock-in appears when sticking to
such provider-specific offerings. This makes it hard to move the
application or parts of the application to a different provider,
considering deployment automation. Moreover, the APIs are
predefined by the provider and must be manually wrapped by
developing custom glue code in case they are not appropriate
for a given deployment scenario.

X. CONCLUSION

Rapid and highly automated deployment processes are key
to shorten software release cycles, which is a critical competitive
advantage. Especially for Cloud-based applications such as
Web applications, mobile apps, and the Internet of Things,
today’s users and customers expect quick responses to occurring
issues and feature requests. The leading paradigms of DevOps
and Cloud computing help to implement comprehensive and
fully automated deployment processes that aim to shorten
release cycles by continuously delivering new iterations of
an application. We outlined limitations and issues of current
deployment automation techniques and proposed an alternative
approach to efficiently and dynamically generate DYNTAIL
engines for individual application topologies. The core of the
approach is based on the automated APIfication of arbitrary
deployment executables such as scripts and plans. More
specifically, we presented the DYNTAIL method and framework
to support the proposed approach, covering design time, build
time, and runtime. We validated our approach by implementing
the DYNTAIL framework based on an end-to-end, open-source
toolchain. Furthermore, our evaluation showed that the overhead
(at build time and runtime) introduced by the DYNTAIL
approach and the APIfication of deployment executables is
reasonable for many environments today, considering the
significant benefits gained by the proposed approach. In terms
of future work we plan to widen the scope of this work,
considering management tasks beside deployment. As an
example, additional executables may be packaged within a
DYNTAIL engine and exposed through corresponding APIs to
cover management actions such as scaling in and out certain
application components. Moreover, we plan to extend the
implementation of the presented APIfication framework to
support a broader variety of APIs for DYNTAIL engines.
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[19] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery - A
Modeling Tool for TOSCA-based Cloud Applications,” in Proceedings
of the 11th International Conference on Service-Oriented Computing,
ser. LNCS, vol. 8274. Springer Berlin Heidelberg, 2013.

[20] V. Andrikopoulos, A. Reuter, S. Gomez Saez, and F. Leymann, “A
GENTL Approach for Cloud Application Topologies,” in Service-
Oriented and Cloud Computing, ser. Lecture Notes in Computer Science.
Springer, 2014, vol. 8745.
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